MTH 303

Real analysis

Homework 3

1. Prove that each of the following sequences $\left\{x_{n}\right\}$ converges to a limit x.
(a) $x_{n}=\frac{n+1}{2 n+3}$
(b) $x_{n}=\frac{n}{n^{2}-n+1}$
(c) $x_{n}=\sqrt{n+1}-\sqrt{n}$
(d) $x_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}$
2. Let $\left\{x_{n}\right\}$ be a sequence of real (or complex) numbers, then $x_{n} \rightarrow 0$ if and only if $\left|x_{n}\right| \rightarrow 0$ if and only if $x_{n}^{2} \rightarrow 0$.
3. Let $\left\{x_{n}\right\}$ be a sequence of real (or complex) numbers. If $x_{n} \rightarrow x$ then $\left|x_{n}\right| \rightarrow|x|$. Also, show that the converse is not true.
4. Let $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ and $\alpha \in \mathbb{R}$. Then
(a) $x_{n}+\alpha y_{n} \rightarrow x+\alpha y$
(b) $x_{n} \cdot y_{n} \rightarrow x \cdot y$
(c) $\frac{1}{x_{n}} \rightarrow \frac{1}{x}$, provided $x \neq 0$.
5. Let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \rightarrow 0$. Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection. Show that the sequence $\left\{y_{n}\right\}$, where $y_{n}=x_{\sigma(n)}$, converges to 0 .
6. (Sandwich lemma) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ be sequences such that $x_{n} \leq z_{n} \leq y_{n}, \forall n$. If $x_{n} \rightarrow x$ and $y_{n} \rightarrow x$, then $z_{n} \rightarrow x$.
7. Show that $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0$.
8. Prove that $\left\{x_{n}\right\}$ is Cauchy if $\left|x_{n}\right| \leq \frac{n+1}{n^{2}+n+1}, \forall n \in \mathbb{N}$
9. Prove that $\left\{x_{n}\right\}$ is Cauchy if $\left|x_{n+1}-x_{n}\right| \leq a^{-n}, \forall n \in \mathbb{N}$ for some $a>1$.
10. Given a sequence of real numbers $\left\{x_{n}\right\}$, consider the sequence of its arithmetic means

$$
s_{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}, n \in \mathbb{N} .
$$

(a) If $\lim _{n \rightarrow \infty} x_{n}=x$, then prove that $\lim _{n \rightarrow \infty} s_{n}=x$.
(b) Construct a sequence $\left\{x_{n}\right\}$ which does not converge, although $\lim _{n \rightarrow \infty} s_{n}=0$.
(c) Can it happen that $x_{n}>0$ for all $n>0$ and that $\lim \sup x_{n}=\infty$, although $\lim _{n \rightarrow \infty} s_{n}=0$.
(d) Set $a_{n}=x_{n+1}-x_{n}, n \geq 1$. Show that

$$
x_{n+1}-s_{n}=\frac{1}{n} \sum_{k=1}^{n} k a_{k} .
$$

Assume that $\lim _{n \rightarrow \infty}\left(n a_{n}\right)=0$ and that $\left\{s_{n}\right\}$ converges. Prove that $\left\{x_{n}\right\}$ converges.

MTH 303 Homework 3 (Continued)

11. Fix a positive number α. Choose $x_{1}>\sqrt{\alpha}$, and define $x_{2}, x_{3}, x_{4}, \ldots$, by the recursion formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right) .
$$

Prove that $\left\{x_{n}\right\}$ is monotonically decreasing and $\lim _{n \rightarrow \infty} x_{n}=\sqrt{\alpha}$.
12. (a) Let $x_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Show that the sequence $\left\{x_{n}\right\}$ diverges to ∞.
(b) Let $\left\{x_{n}\right\}$ be a sequence of positive real numbers and consider $y_{n}=\sum_{k=1}^{n}\left(x_{k}+\frac{1}{x_{k}}\right)$. Show that the sequence $\left\{y_{n}\right\}$ diverges to ∞.
(c) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of positive real numbers. Assume that $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=$ $\alpha>0$. Show that $\lim _{n \rightarrow \infty} x_{n}=\infty$ if and only if $\lim _{n \rightarrow \infty} y_{n}=\infty$.
13. Let $\left\{x_{n}\right\}$ be a sequence of positive real numbers. Assume that $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\alpha>0$. Then show that $\lim _{n \rightarrow \infty}\left(x_{n}\right)^{\frac{1}{n}}=\alpha$.
14. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two bounded sequences of real numbers. Show that
(a) $\lim \sup \left(x_{n}+y_{n}\right) \leq \lim \sup x_{n}+\lim \sup y_{n}$
(b) $\liminf \left(x_{n}+y_{n}\right) \geq \liminf x_{n}+\liminf y_{n}$
(c) If $x_{n} \rightarrow x$, then
i. $\lim \sup \left(x_{n}+y_{n}\right)=x+\lim \sup y_{n}$
ii. $\liminf \left(x_{n}+y_{n}\right)=x+\liminf y_{n}$
(d) If $x_{n} \rightarrow x$ and $x \geq 0$ then
i. $\lim \sup \left(x_{n} y_{n}\right)=x \lim \sup y_{n}$
ii. $\liminf \left(x_{n} y_{n}\right)=x \liminf y_{n}$
15. Find $\lim \sup x_{n}$ and $\lim \inf x_{n}$ for each of the following sequences
(a) $x_{n}=(-1)^{n+1}$
(b) $x_{n}=(-1)^{n}+\frac{1}{n}$
(c) $x_{n}=\frac{1}{n}+\frac{(-1)^{n}}{n^{2}}$
(d) $x_{n}=\left(1+\frac{1}{n}\right)^{n}$

